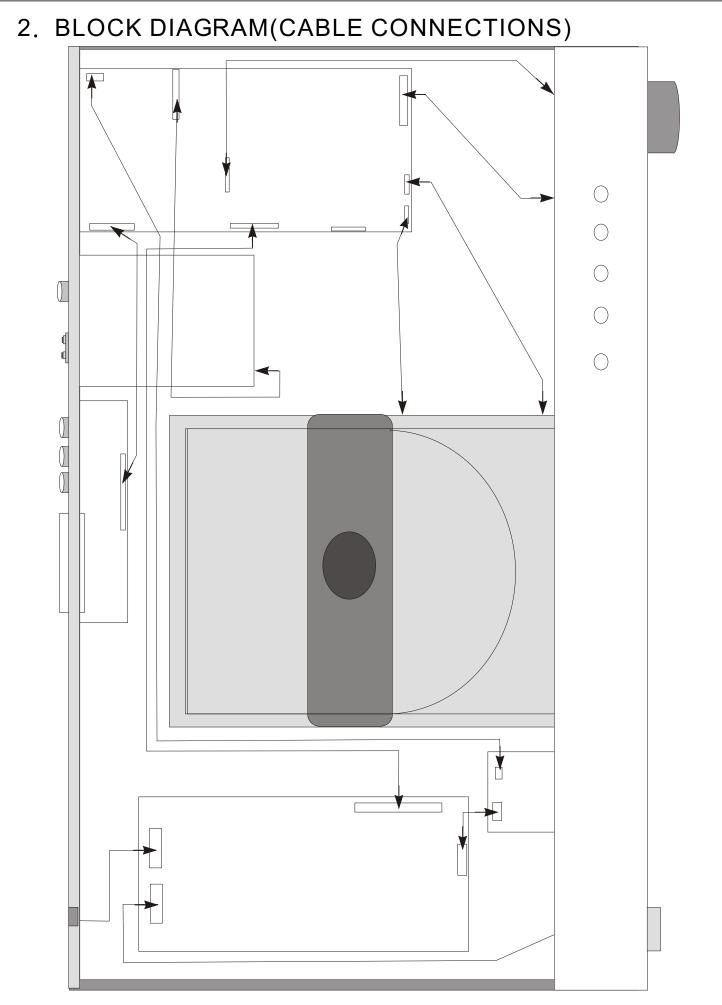
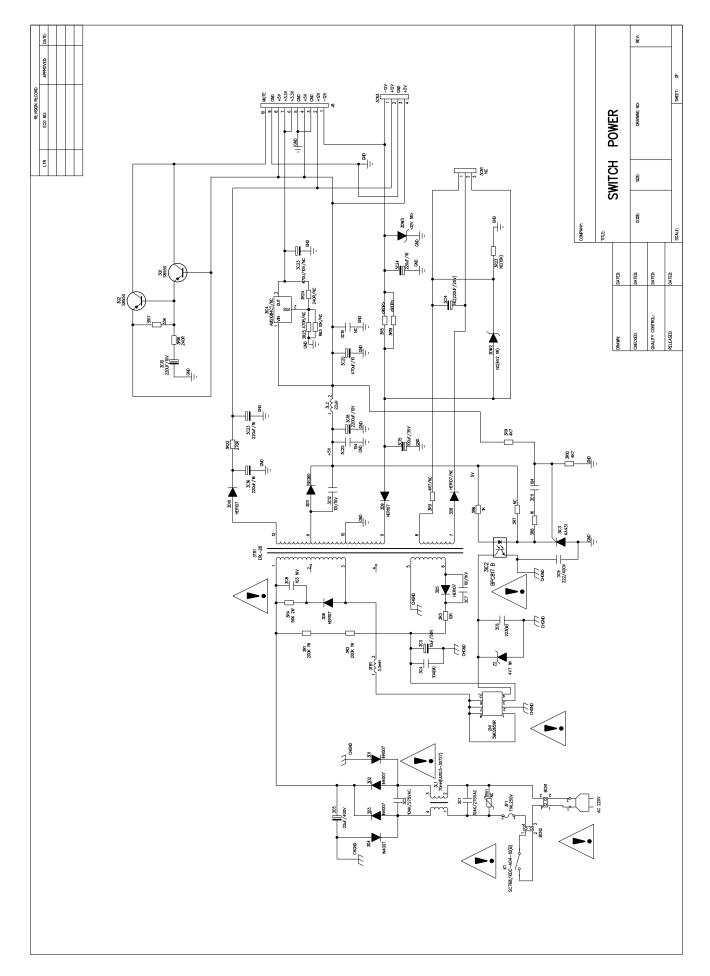


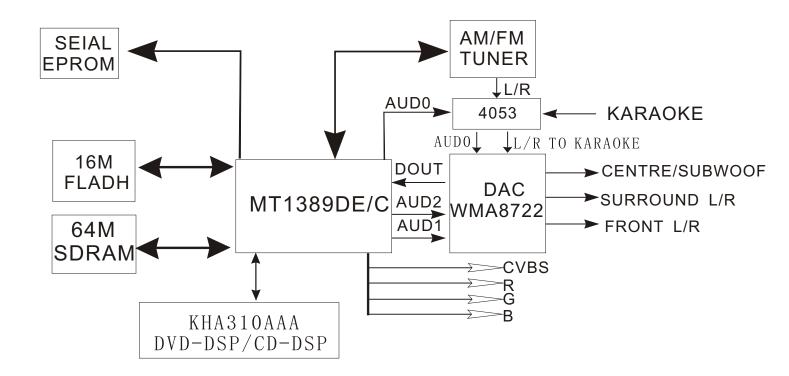


# **DVD HOME THEATER SYSTEM**


# Model: DV-R6000DSS

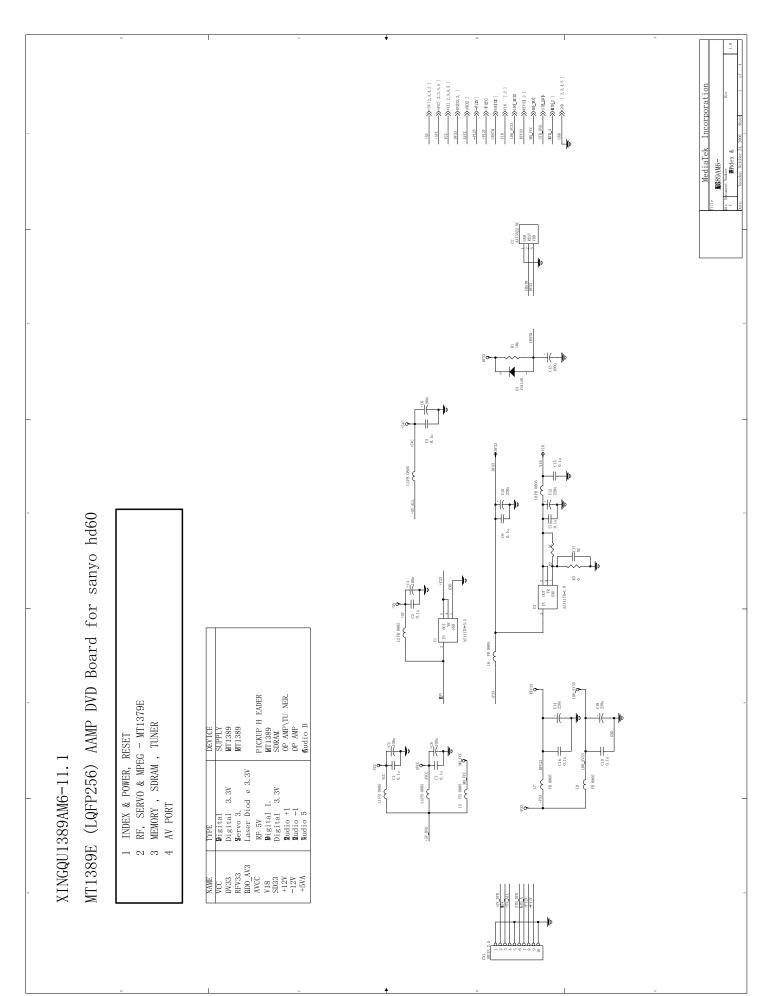

# SERVICE MANUAL

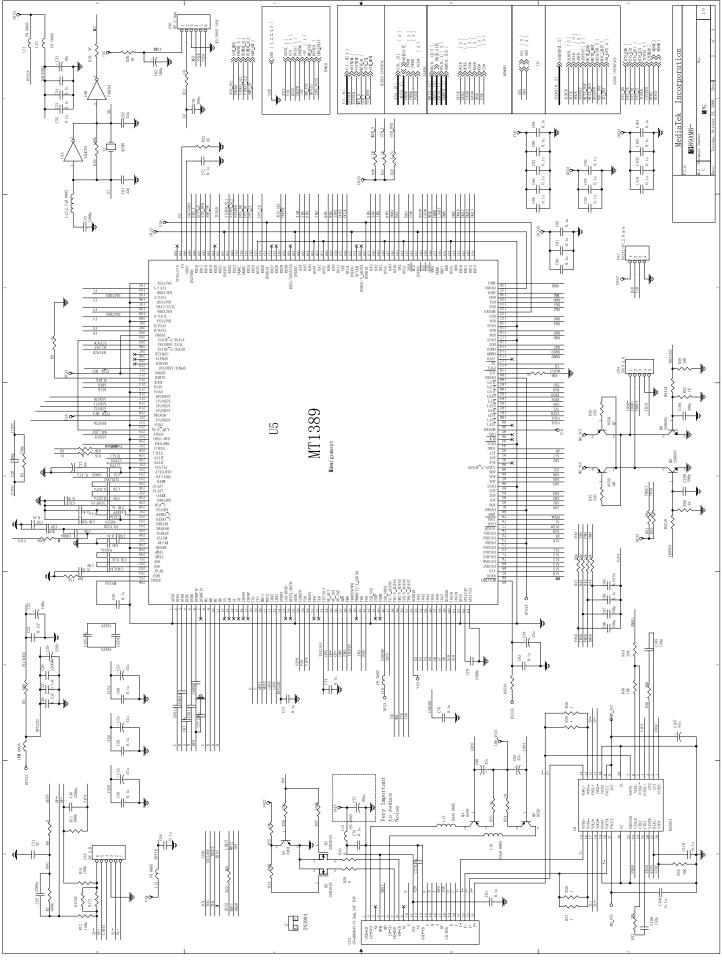
www.akai.ru

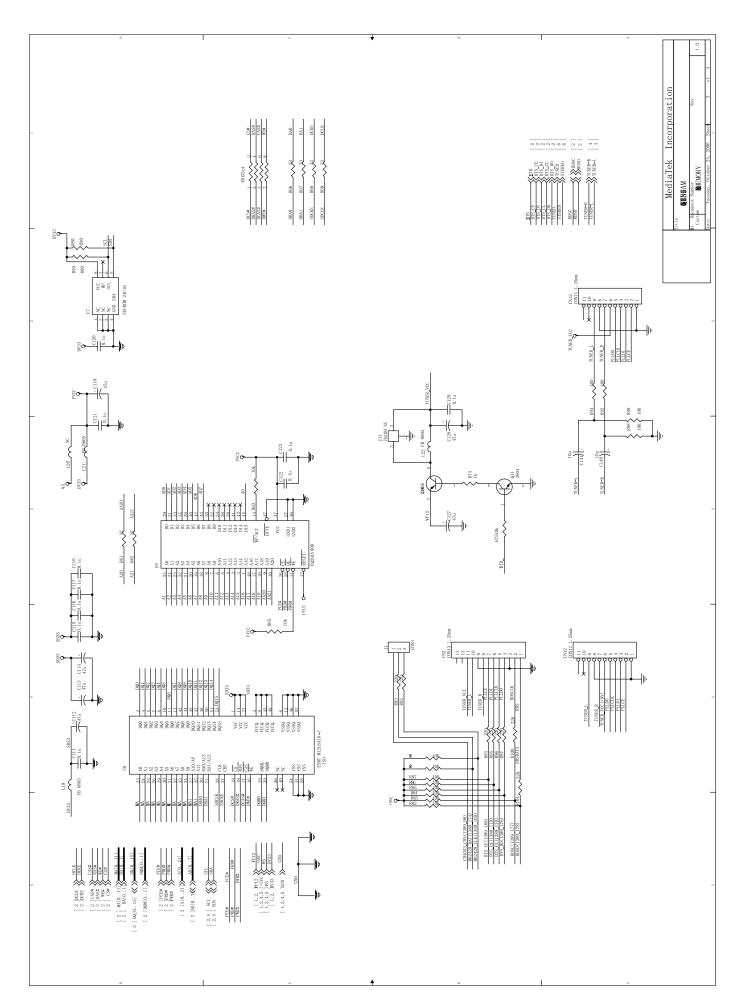

# **1.CONTENTS**

| Title                                                       | Page |
|-------------------------------------------------------------|------|
| 1. CONTENTS                                                 | 1    |
| 2. BLOCK DIAGRAM (CABLE CONNECTIONS)                        | 2    |
| 3. POWER SUPPLY                                             | 3    |
| 4. FUNCTIONAL DESCRITPIONS                                  | 4    |
| 4.1 DVD MPEG board                                          | 4    |
| 4.2 Front Panel                                             | 10   |
| 4.3 SMPS                                                    | 10   |
| 4.4 DVD Driver                                              | 12   |
| 5. DESCRIPTION OF THE INTEGRATED CIRCUITS                   | 13   |
| 5.1 SWPSTRANSFORMER                                         | 13   |
| 5.2 FRONT PANEL DRIVER IC FRO VIR (PT6311)                  | 14   |
| 5.3 SWPSCONTROLLER IC (5M02659)                             | 18   |
| 5.4 SWPS PROGAMMABLE SHUNT RE<br>GULATOR (FAIRCHILD TL 431) | 22   |
| 5.5 LINEFILTER(2x6.8mH)                                     | 23   |

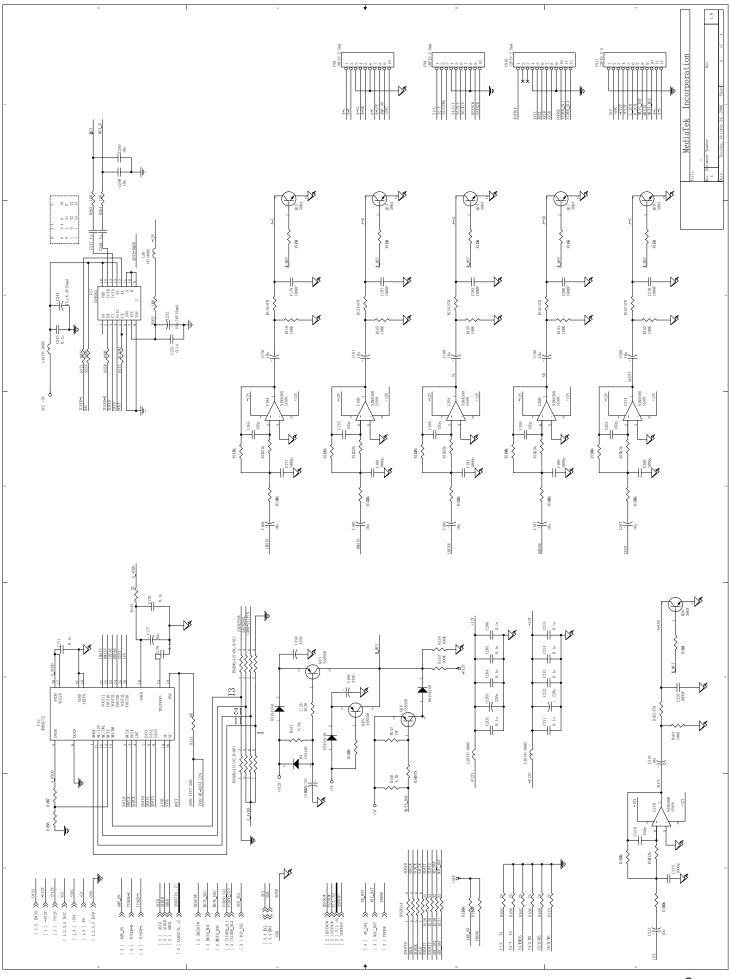


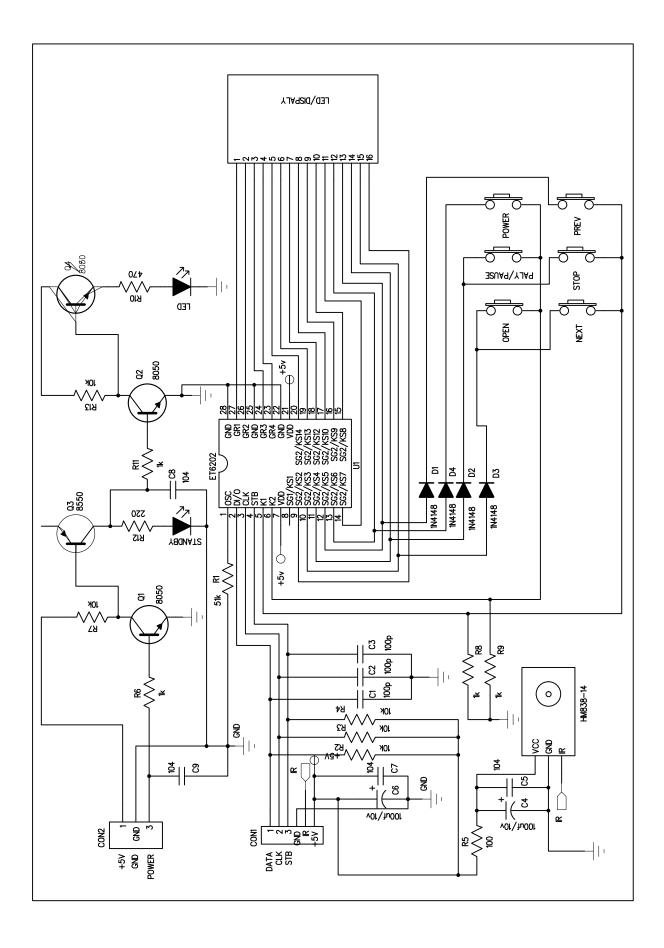




### 4.FUNCTIONAL DESCRIPTIONS 4.1DVD MPEG board




This board implements the back-end circuitry of a DVD player. It is composed of the following subsystems:


- \* Microcontroller which does main control to all other sub-blocks of the system including user interface, driver interface, audio/video output.
- \* Vaddis A/V Decoder IC decodes the bitstream coming from the DVD front-end drive, and Optionally performs audio and video effects.
- \* Audio Codec







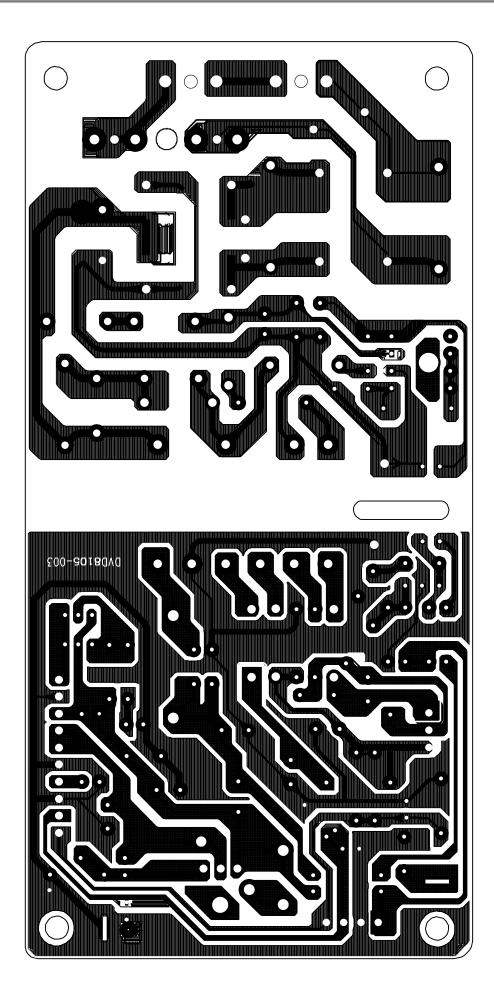

# DVD Service Manual





# 4.2.1 Front Panel Interface

6 Pin, Data Connector Pin Assignments


| PIN | NAME | I/O | DESCRIPTION             |
|-----|------|-----|-------------------------|
| 1   | DATA |     | IR sensor interrupt     |
| 2   | CLK  | 0   | Front Panel chip select |
| 3   | STB  | 0   | Front Panel clock       |
| 4   | GND  | 0   | Front Panel Data output |
| 5   | VCC  |     |                         |
| 6   | REM  | I   | Front Panel Data input  |

There are 1 device operated by the E6202 or CS1694 (Optional):

#### 4.3 SMPS

The mains power(220VAC) fed from K1is filtered through 3C1, 3L1, 3C2 then rectified by D1,D2, D3 and D4 and generates an output at 300VDC. This 300VDC fed to 3TR1 (pin1, pin5) which connects to 5M02659R(pin3), then 5M02659R will automatically generate a 50KHz square waveform, this 50KHz square waveform controls the ON/OFF between 5M02659R pin1 and the ground. In normal condition, T1 primary (between pin2 and pin4) will create a 50KHz square waveform which is controlled by 5M02659R, this signal then fed to 3TR1 and generates 2 different potential voltages of 12V and 5V.

then rectified by3D11 and then filtered by3L2, 3R9, 3C18, 3CC25 and 3C11. The feedback voltage is controlled by Ic3 TL431 and IC2 PC817. When the output voltage is higher than 5V, the voltage at TL431(2.5V) is compared with R10 and send out a signal to 5M02659R, the output square waveform then will change to adjust the output voltage, this acts as a voltage stabilizer.



- 4.4.1 Adopt small lens: can adopt DV34.Hittachi .Mipseumi . Thomson act lens
- 4.5 Electric specification
- 4.5.1 Drive cell:adopt LD-300C-12400 electricity machine
  - 5.2 Electricity machine work voltage is 3V-5.9V
  - 5.3 General work voltage is 3.3V-5V
  - 5.4 Unilateralism(com or go) move time:<1.5S(add 5V voltage)
  - 5.5 In 5 C-10°C work current is <120mA
- 4.6 Testing condition
  - 6.1 Position: level placed
  - 6.2 environment: temperature 22+2 C

Humidity 50+5%

- 6.3 Turnover storehouse voltage:5V+0.5V
- 6.4 Standard DVD lens testing frock
  6.5 Standard DVD testing dish
  - 6.5 Standard DVD testing dish



# 5. DESCRIPTION OF THE INTEGRATED CIRCUITS

## 5.1 SMPS TRANSFORMER

### **1. GENERAL INFORMATION**

| Main Voltage Operations: | 90Vac-265Vac |
|--------------------------|--------------|
| Main Drop-out Voltage:   | Max. 90 Vac  |
| Mains STart-up Voltage:  | Max. 90 Vac  |
| Operating Frequency:     | 60 KHz       |

### 2. ELECTRICAL CHARACTERISTICS

### 2.1 STATIC CHARACTERISTICS

| WINDING           | PIN.NO | INDUCTANCE | 6DESCRIPTION |
|-------------------|--------|------------|--------------|
| PrimaryInductance | 2-4    | 1.5mH10%   | <0.50W       |

### 1. Primary Leakage inductance (Pin 2-4) L1.5mH

### 2.2 WITHSTANDING VOLTAGE

The transformer shall sithstanding a voltage of 4 Kvms for 1 minute and 1 mA between primary and seconday winding and also 2 Kvms for 1 minute and 1 mA between primary winding with core and secondary winding with core.

### 2.3 INSULATION RESISTANCE

The insulation resistance shall be ore than 500M between primary and seconday windings when the applied voltage 300 Vdc for 1 minute

## 2.4 ELECTRICAL CHARACTERISTICS

- 1. Before taking measurement Pp01 will be to give 5.0Vdc on 5.0Vdc line at Minimum setting of controls and a mains voltage 220 Vac.
- 2. Before taking a measurement, DVD set should be working at least 5 minutes on Normal condition

# 5.2 FRONT PANEL DRIVER IC FOR VIR (PT6311)

### 5.2.1 General Description

VFD Driver/Controller IC

PT6311

#### **BLOCK DIAGRAM**

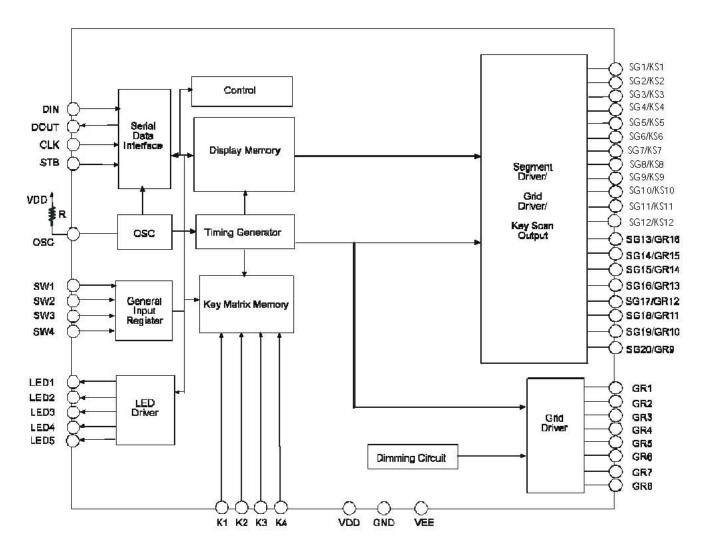



Figure 1: PT6311 Internal Block Diagram

VFD Driver/Controller IC

PT6311

#### **PIN CONFIGURATION**

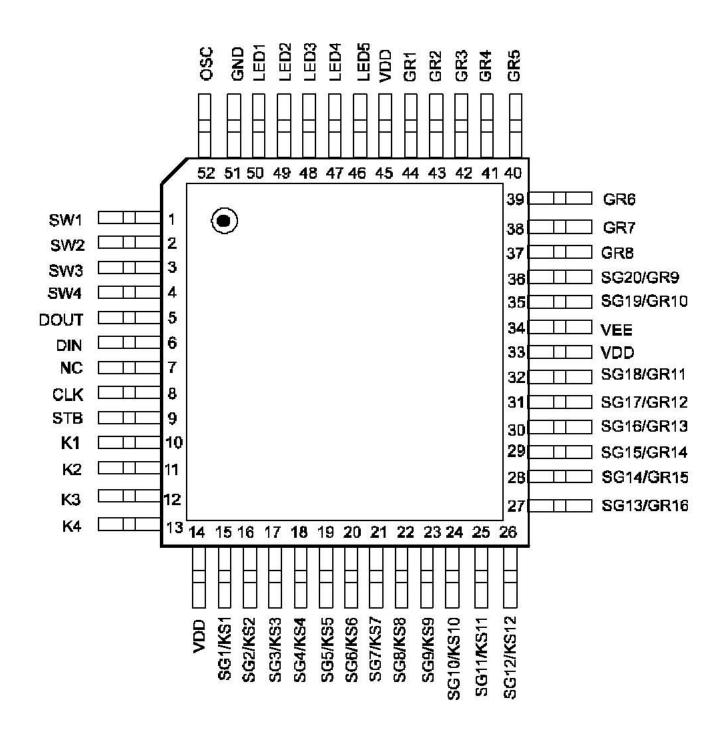



Figure 2: PT6311 Pin Configuration

#### VFD Driver/Controller IC

PT6311

#### **PIN DESCRIPTION**

| Pin Name                                        | I/O           | Description                                                                                                                                      | Pin No.                    |
|-------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| SW1 to SW4                                      | Ι             | General Purpose Input Pins                                                                                                                       | 1 to 4                     |
| DOUT                                            | 0             | Data Output Pin (N-Channel, Open-Drain)<br>This pin outputs serial data at the falling edge<br>of the shift clock (starting from the lower bit). | 5                          |
| DIN                                             | I             | Data Input Pin<br>This pin inputs serial data at the rising edge of<br>the shift clock (starting from the lower bit)                             | 6                          |
| N C                                             | 3 <u>1</u> 33 | No Connection                                                                                                                                    | 7                          |
| CLK                                             | Ι             | C lock Input Pin<br>This pin reads serial data at the rising edge and<br>outputs data at the falling edge.                                       | 8                          |
| STB                                             | I             | Serial Interface Strobe Pin<br>The data input after the STB has fallen is<br>processed as a command.<br>When this pin is "HIGH", CLK is ignored. | 9                          |
| K1 to K4                                        | I             | Key Data Input Pins<br>The data inputted to these pins are latched at<br>the end of the display cycle.                                           | 10 to<br>13                |
| VDD                                             | (*)           | Logic Power Supply                                                                                                                               | 14,33,<br>45               |
| SG1/KS1 to SG12/KS12                            | 0             | High-Voltage Segment Output Pins<br>Also acts as the Key Source                                                                                  | 15 to<br>26                |
| SG20/GR9 to SG19/GR10<br>SG18/GR11 to SG13/GR16 | 0             | High Voltage Segment/Grid Output Pins                                                                                                            | 36 to<br>35<br>32 to<br>27 |
| VEE                                             | (#)           | Pull-Down Level                                                                                                                                  | 34                         |
| GR1 to GR8                                      | 0             | High-Voltage Grid Output Pins                                                                                                                    | 44 to<br>37                |
| LED1 to LED5                                    | 0             | LED Output Pin                                                                                                                                   | 50 to<br>46                |
| GND                                             |               | Ground Pin                                                                                                                                       | 51                         |
| OSC                                             | I             | Oscillator Input Pin<br>A resistor is connected to this pin to determine<br>the oscillation frequency                                            | 52                         |

VFD Driver/Controller IC

PT6311

### 12-GRID X 16-SEGMENT VFD APPLICATION CIRCUIT

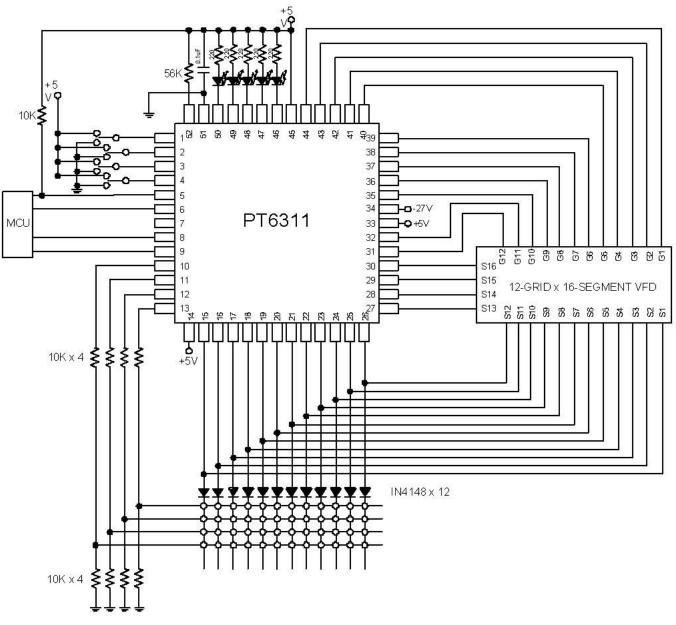



Figure 18: PT6311 Application Circuit

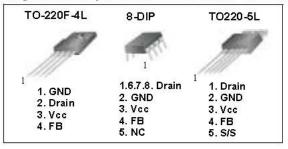
# 5.3 SWPS CONTROLLER IC (5M02659)



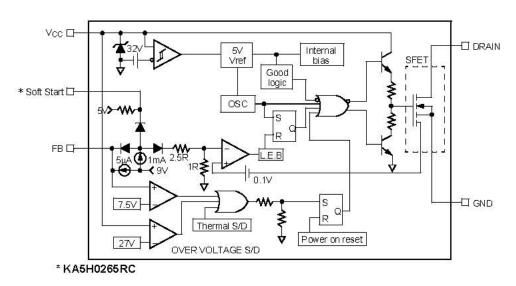
SEMICONDUCTOR

www.fairchildsemi.com

# KA5H0265RC, KA5M0265R, K


#### KA5H0265RC, KA5M0265R, KA5L0265R, KA5H02659RN/KA5M02659RN, KA5H0280R, KA5M0280R Fairchild Power Switch(FPS)

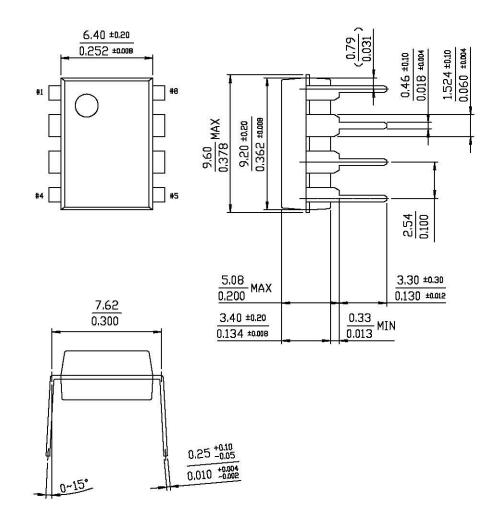
#### Features


- Precision Fixed Operating Frequency (100/67/50kHz)
- Low Start-up Current (Typ. 100uA)
- Pulse by Pulse Current Limiting
- Over Load Protection
- Over Voltage Protection (Min. 25V)
- Internal Thermal Shutdown Function
- Under Voltage Lockout
- Internal High Voltage Sense FET
- Auto-Restart Mode

#### Description

The Fairchild Power Switch(FPS) product family is specially designed for an off-line SMPS with minimal external components. The Fairchild Power Switch(FPS) consist of high voltage power SenseFET and current mode PWM IC. Included PWM controller features integrated fixed oscillator, under voltage lock out, leading edge blanking, optimized gate turn-on/turn-off driver, thermal shut down protection, over voltage protection, and temperature compensated precision current sources for loop compensation and fault protection circuitry-compared to discrete MOSFET and controller or  $R_{CC}$  switching converter solution. The Fairchild Power Switch(FPS) can reduce total component count, design size, weight and at the same time increase efficiency, productivity, and system reliability. It has a basic platform well suited for cost-effective design in either a flyback converter or a forward converter.




#### Internal Block Diagram



18







#### **Electrical Characteristics (SFET Part)**

(Ta=25°C unless otherwise specified)

| Parameter                                     | Symbol  | Condition                                            | Min.              | Тур.          | Max.     | Unit |
|-----------------------------------------------|---------|------------------------------------------------------|-------------------|---------------|----------|------|
| KA5x0265xRx                                   |         |                                                      |                   |               | Tyn      |      |
| Drain-Source Breakdown Voltage                | BVDSS   | VGS=0V, ID=50µA                                      | 650               | -             | -        | V    |
|                                               | C.      | VDS=Max. Rating, VGS=0V                              |                   | -             | 50       | μA   |
| Zero Gate Voltage Drain Current               | IDSS    | V <sub>DS</sub> =0.8Max. Rating,<br>VGS=0V, TC=125°C | 18                |               | 200      | μA   |
| Static Drain-Source on Resistance (Note)      | RDS(ON) | VGS=10V, ID=0.5A                                     | -                 | 5.0           | 6.0      | Ω    |
| Forward Transconductance <sup>(Note)</sup>    | gfs     | VDS=50V, ID=0.5A                                     | 1.5               | 2.5           | -        | S    |
| Input Capacitance                             | Ciss    |                                                      | 2 <b>4</b>        | 550           | -        |      |
| Output Capacitance                            | Coss    | VGS=0V, VDS=25V,<br>f=1MHz                           | 1                 | 38            |          | pF   |
| Reverse Transfer Capacitance                  | Crss    |                                                      | ·-                | 17            | -        |      |
| Turn on Delay Time                            | td(on)  | VDD=0.5B VDSS, ID=1.0A                               | 5 <del>4</del>    | 20            | -        |      |
| Rise Time                                     | tr      | (MOSFET switching time is                            | 19 <u>14</u>      | 15            | <u>.</u> | nS   |
| Turn Off Delay Time                           | td(off) | essentially independent of                           | 10.00             | 55            | 100      | 110  |
| Fall Time                                     | tf      | operating temperature)                               | -                 | 25            | :=:      |      |
| Total Gate Charge<br>(Gate-Source+Gate-Drain) | Qg      | VGS=10V, ID=1.0A,<br>VDS=0.5B VDSS (MOSFET           | -                 | -             | 35       |      |
| Gate-Source Charge                            | Qgs     | switching time is essentially                        | 18                | 3             |          | nC   |
| Gate-Drain (Miller) Charge                    | Qgd     | independent of operating temperature)                | 18                | 12            | ÷        |      |
| KA5x0280R                                     | 2       |                                                      |                   |               | De .     |      |
| Drain-Source Breakdown Voltage                | BVDSS   | VGS=0V, ID=50µA                                      | 800               | 1 <u>10</u> 8 | <u>.</u> | V    |
|                                               |         | VDS=Max. Rating, VGS=0V                              | 9 <del></del> (   | -             | 50       | μA   |
| Zero Gate Voltage Drain Current               | IDSS    | V <sub>DS</sub> =0.8Max. Rating,<br>VGS=0V, TC=125°C | -                 | -             | 200      | μA   |
| Static Drain-Source on Resistance (Note)      | RDS(ON) | VGS=10V, ID=0.5A                                     | -                 | 5.6           | 7.0      | Ω    |
| Forward Transconductance <sup>(Note)</sup>    | gfs     | VDS=50V, ID=0.5A                                     | 1.5               | 2.5           | <u>-</u> | S    |
| Input Capacitance                             | Ciss    |                                                      | 9 <del>.5</del> 1 | 250           | =0       |      |
| Output Capacitance                            | Coss    | VGS=0V, VDS=25V,<br>f=1MHz                           | -                 | 52            | -:       | pF   |
| Reverse Transfer Capacitance                  | Crss    |                                                      | -                 | 25            | -        | 8    |
| Turn on Delay Time                            | td(on)  | VDD=0.5B VDSS, ID=1.0A                               | ( <del>-</del> )  | 21            | 8        | 0    |
| Rise Time                                     | tr      | (MOSFET switching time is                            | . <del></del>     | 28            | -        |      |
| Turn Off Delay Time                           | td(off) | essentially independent of                           | -                 | 77            | -0       | nS   |
| Fall Time                                     | tf      | operating temperature)                               | 12                | 24            |          |      |
| Total Gate Charge<br>(Gate-Source+Gate-Drain) | Qg      | VGS=10V, ID=1.0A,<br>VDS=0.5B VDSS (MOSFET           | 1 <b>.</b>        | =             | 60       |      |
| Gate-Source Charge                            | Qgs     | switching time is essentially                        | -                 | 15            | -        | nC   |
| Gate-Drain (Miller) Charge                    | Qgd     | independent of operating temperature)                | ( <del></del> )   | 20            | -        |      |

#### Note:

1 . Pulse test: Pulse width  $\leq$  300  $\mu S,$  duty cycle  $\leq 2\%$ 

<sup>2</sup>.  $s = \frac{1}{R}$ 

KA5X02XX-SERIES

#### Electrical Characteristics (Control Part) (Continued)

(Ta=25°C unless otherwise specified)

| Parameter                                       | Symbol                | Condition                             | Min.     | Тур.          | Max.   | Unit  |
|-------------------------------------------------|-----------------------|---------------------------------------|----------|---------------|--------|-------|
| UVLO SECTION                                    |                       |                                       |          | Contractor of |        |       |
| Start Threshold Voltage                         | VSTART                | VFB=GND                               | 14       | 15            | 16     | V     |
| Stop Threshold Voltage                          | VSTOP                 | VFB=GND                               | 8.2      | 8.8           | 9.4    | V     |
| OSCILLATOR SECTION                              |                       |                                       |          |               |        |       |
| Initial Accuracy                                | Fosc                  | KA5H0265xRx<br>KA5H0280R              | 90       | 100           | 110    | kHz   |
| Initial Accuracy                                | Fosc                  | KA5M0265xRx<br>KA5M0280R              | 61       | 67            | 73     | kHz   |
| Initial Accuracy                                | Fosc                  | KA5L0265R                             | 45       | 50            | 55     | kHz   |
| Frequency Change With Temperature (2)           | $\Delta F / \Delta T$ | -25°C ≤ Ta ≤ +85°C                    | 20<br>15 | ±5            | ±10    | %     |
| Maximum Duty Cycle                              | Dmax                  | KA5H0265xRx<br>KA5H0280R              | 62       | 67            | 72     | %     |
| Maximum Duty Cycle                              | Dmax                  | KA5M0265xRx<br>KA5M0280R<br>KA5L0265R | 72       | 77            | 82     | %     |
| FEEDBACK SECTION                                |                       | 5                                     |          |               | 0      |       |
| Feedback Source Current                         | IFB                   | Ta=25°C, $0V \le Vfb \le 3V$          | 0.7      | 0.9           | 1.1    | mA    |
| Shutdown Feedback Voltage                       | VsD                   | Vfb≤6.5V                              | 6.9      | 7.5           | 8.1    | V     |
| Shutdown Delay Current                          | Idelay                | Ta=25°C, 5V ≤ Vfb ≤ VsD               | 4        | 5             | 6      | μA    |
| SOFT START SECTION                              |                       |                                       |          |               |        | te.   |
| Soft Start Voltage                              | Vss                   | KA5H0265RC                            | 4.7      | 5.0           | 5.3    | V     |
| Soft Start Current                              | lss                   | - KAJHUZOJKC                          | 0.8      | 1.0           | 1.2    | mA    |
| REFERENCE SECTION                               |                       | 1. U                                  |          |               |        |       |
| Output Voltage <sup>(1)</sup>                   | Vref                  | Ta=25°C                               | 4.80     | 5.00          | 5.20   | V     |
| Temperature Stability <sup>(1)(2)</sup>         | Vref/∆T               | -25°C ≤ Ta ≤ +85°C                    |          | 0.3           | 0.6    | mV/°C |
| CURRENT LIMIT(SELF-PROTECTION)S                 | ECTION                | 1                                     |          |               |        |       |
| Peak Current Limit                              | IOVER                 | KA5x02659RN                           | 0.79     | 0.9           | 1.01   | Α     |
| Peak Current Limit                              | IOVER                 | KA5x0265Rx<br>KA5x0280R               | 1.05     | 1.2           | 1.34   | А     |
| PROTECTION SECTION                              |                       |                                       |          |               |        | +     |
| Over Voltage Protection                         | Vovp                  | V <sub>CC</sub> ≥ 24V                 | 25       | 27            | 29     | V     |
| Thermal Shutdown Temperature <sup>(1)</sup>     | TSD                   | -                                     | 140      | 160           | 1925   | °C    |
| TOTAL DEVICE SECTION                            |                       |                                       |          |               | 2<br>2 | (C)   |
| Start-up Current                                | ISTART                | Vcc=14V                               | -        | 100           | 170    | μA    |
| Operating Supply Current<br>(Control Part Only) | IOPR                  | Vcc ≤ 28                              | -        | 7             | 12     | mA    |

Note:

1. These parameters, although guaranteed, are not 100% tested in production

2. These parameters, although guaranteed, are tested in EDS (wafer test) process

#### 5.4 SMPS PROGRAMMABLE SHUNT REGULATOR (FAIRCHILD TL 431)

#### Features

- \* Programmable output voltage to 36volts
- \* Low dynamic output impedance 0.20 typical
- \* Sink current capability of 1.0 to 100mA

\* Equivalent full-range temperature coefficient

of 50 ppm °C typical

\* Temperature compensated for operation over full rated operating temperature range

\* Low output noise voltage

\* Fast turn-on response

Description

The TL 431/TL 431A are three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors. These devices have a gypical dynamic output impedanceof 2.0W Active oupput circuity provides a very sharp turn-on characteristic making these devices excel lent replacement for zener diodes in many applications

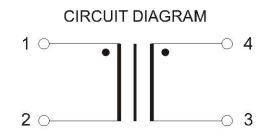


#### Absolute maximum ratings

| Parameter                                                  | Symbol | Value       | Unit |
|------------------------------------------------------------|--------|-------------|------|
| Cathode voltage                                            | VKA    | 37          | V    |
| Cathode current Range (Continuous)                         | IKA    | -100 ~ +150 | MAI  |
| Reference Input Current Range                              | IREF   | 0.05 ~ +10  | MA   |
| Power dissipation<br>D,Z Sffix Package<br>N Suffix Package | PD     | 770<br>1000 | MW   |
| Operating Temperature Range                                | TOPR   | -25 ~ +85   | °C   |
| Storage Temperature Range                                  | TSTG   | -65 ~ +150  | °C   |

#### **Recommended Operating conditions**

| Parameter       | Symbol | Value | Value | Value | Unit |
|-----------------|--------|-------|-------|-------|------|
| Cathode voltage | VKA    | VREF  | -     | 36    | V    |
| Cathode Current | IKA    | 1.0   | -     | 100   | MA   |


### 5.5 LINE FILTER (2 X 60mH)

#### ELECTRICAL DATA

Inductance: L1-2=L3-4-30mH - 15% - +20% Resistance: R 1-2 = R 3-4 = 1.5 ohm (max) Rated current: Irms = 0.50 A (F= 1 Khz V= 1 Vms)

LEAKAGE INDUCTANCE

| L 1-2 = L 3-4 100+/- 20%uH NO |
|-------------------------------|
|-------------------------------|

